

Use the Venn diagram to answer the questions below.

1. A and C =

4, S

2. C and A and B = $\frac{1}{4}$ 3. A or C = $\frac{1}{2}$ 2 3 4 5 7 8 9

4. C or B = $\frac{1}{2}$ 3, $\frac{1}{2}$ 3, 6, 0

5. B and C = $\frac{1}{2}$ 4, $\frac{1}{2}$ 6 not A = $\frac{1}{2}$ 7, not C = $\frac{1}{2}$ 3 6 0

8. A = $\frac{1}{2}$ 5 6 0

Mar 2-8:46 PM Sep 8-9:25 PM

1.2 Learning Targets

- I can use the Fundamental Counting Principle to determine the number of outcomes.
- I can create tree diagrams to represent outcomes for a series of events.

Mar 2-8:47 PM Page 2

Page 3 Page 4

1

Page 5 Page 6

Page 7 Page 8

Page 9 Mar 2-8:48 PM

2

Fundamental Counting Principle

A multiple choice test with 10 questions and each question has options A-D, how many different ways can the test be answered?

 $=4^{\circ}=1048576$ How many of these ways actually has all the correct answers? "and" multiply "or" add

Mar 2-8:58 PM

Factorials

4 students in 4 chairs example

= 24 n Factorial: The number of ways in which one can arrange n distinct objects such that every object is used (n! is found by multiplying all of the numbers 4! starting with n and going down to 1).

Mar 2-9:08 PM

Factorials

How many ways can 6 different books be positioned on a shelf?

$$6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

How many ways can the letters HIJKLMN be arranged? 7! = 5040

Ways to Count

- 1. Use a Venn Diagram and count
- 2. Draw a tree diagram and count.
- 3. Fundamental Counting Principle
- 5. Make an organized list and count (dice chart).

Mar 2-9:13 PM

Mar 2-9:13 PM

Assignment:

Sec. 1.2 #1-16, 19-24

• I can use the Fundamental Counting Principle to determine the number of outcomes.

represent outcomes for a series

of events.

• I can create tree diagrams to

Organized_lists.pdf